Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.492
Filtrar
1.
Front Immunol ; 15: 1389134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605972

RESUMO

Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Transplante das Ilhotas Pancreáticas/métodos , Inteligência Artificial , Diabetes Mellitus Experimental/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Insulina
2.
Cell Transplant ; 33: 9636897241246577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646716

RESUMO

Calcineurin inhibitors (CNIs) are critical in preventing rejection posttransplantation but pose an increased risk of post-transplant diabetes (PTD). Recent studies show that late conversion from CNIs to belatacept, a costimulation blocker, improves HbA1c in kidney transplant recipients with PTD or de novo diabetes. This study investigates whether the observed effects on PTD stem solely from CNI withdrawal or if belatacept influences PTD independently. The study assessed the impact of tacrolimus and belatacept on insulin secretion in MIN6 cells (a beta cell line) and rat islets. Tacrolimus and belatacept were administered to the cells and islets, followed by assessments of cell viability and insulin secretion. Tacrolimus impaired insulin secretion without affecting cell viability, while belatacept showed no detrimental effects on either parameter. These findings support clinical observations of improved HbA1c upon switching from tacrolimus to belatacept. Belatacept holds promise in islet or pancreas transplantation, particularly in patients with unstable diabetes. Successful cases of islet transplantation treated with belatacept without severe hypoglycemia highlight its potential in managing PTD. Further research is needed to fully understand the metabolic changes accompanying the transition from CNIs to belatacept. Preserving insulin secretion emerges as a promising avenue for investigation in this context.


Assuntos
Abatacepte , Imunossupressores , Insulina , Tacrolimo , Tacrolimo/uso terapêutico , Tacrolimo/farmacologia , Abatacepte/uso terapêutico , Abatacepte/farmacologia , Animais , Ratos , Insulina/metabolismo , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Humanos , Masculino , Secreção de Insulina/efeitos dos fármacos , Camundongos , Transplante das Ilhotas Pancreáticas/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo
3.
Cell Transplant ; 33: 9636897241243014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659255

RESUMO

Stress-induced islet graft loss during the peri-transplantation period reduces the efficacy of islet transplantation. In this prospective, randomized, double-blind clinical trial, we evaluated the safety and efficacy of 60 mg/kg human alpha-1 antitrypsin (AAT) or placebo infusion weekly for four doses beginning before surgery in chronic pancreatitis (CP) patients undergoing total pancreatectomy and islet autotransplantation (TP-IAT). Subjects were followed for 12 months post-TP-IAT. The dose of AAT was safe, as there was no difference in the types and severity of adverse events in participants from both groups. There were some biochemical signals of treatment effect with a higher oxygen consumption rate in AAT islets before transplantation and a lower serum C-peptide (an indicator of islet death) in the AAT group at 15 min after islet infusion. Findings per the statistical analysis plan using a modified intention to treat analysis showed no difference in the C-peptide area under the curve (AUC) following a mixed meal tolerance test at 12 months post-TP-IAT. There was no difference in the secondary and exploratory outcomes. Although AAT therapy did not show improvement in C-peptide AUC in this study, AAT therapy is safe in CP patients and there are experiences gained on optimal clinical trial design in this challenging disease.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatectomia , Pancreatite Crônica , Transplante Autólogo , alfa 1-Antitripsina , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Pancreatite Crônica/cirurgia , Pancreatite Crônica/terapia , alfa 1-Antitripsina/uso terapêutico , Masculino , Feminino , Pancreatectomia/métodos , Pessoa de Meia-Idade , Transplante Autólogo/métodos , Adulto , Método Duplo-Cego , Peptídeo C/sangue , Peptídeo C/metabolismo , Estudos Prospectivos
4.
Life Sci ; 343: 122545, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458556

RESUMO

Type-1 Diabetes Mellitus (T1DM) manifests due to pancreatic beta cell destruction, causing insulin deficiency and hyperglycaemia. Current therapies are inadequate for brittle diabetics, necessitating pancreatic islet transplants, which however, introduces its own set of challenges such as paucity of donors, rigorous immunosuppression and autoimmune rejection. Organoid technology represents a significant stride in the field of regenerative medicine and bypasses donor-based approaches. Hence this article focuses on strategies enhancing the in vivo engraftment of islet organoids (IOs), namely vascularization, encapsulation, immune evasion, alternative extra-hepatic transplant sites and 3D bioprinting. Hypoxia-induced necrosis and delayed revascularization attenuate organoid viability and functional capacity, alleviated by the integration of diverse cell types e.g., human amniotic epithelial cells (hAECs) and human umbilical vein endothelial cells (HUVECs) to boost vascularization. Encapsulation with biocompatible materials and genetic modifications counters immune damage, while extra-hepatic sites avoid surgical complications and immediate blood-mediated inflammatory reactions (IBMIR). Customizable 3D bioprinting may help augment the viability and functionality of IOs. While the clinical translation of IOs faces hurdles, preliminary results show promise. This article underscores the importance of addressing challenges in IO transplantation to advance their use in treating type 1 diabetes effectively.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/cirurgia , Organoides , Células Endoteliais da Veia Umbilical Humana
5.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474380

RESUMO

Islet transplantation is a therapeutic option to replace ß-cell mass lost during type 1 or type 3c diabetes. Innate immune responses, particularly the instant blood-mediated inflammatory reaction and activation of monocytes, play a major role in the loss of transplanted islet tissue. In this study, we aimed to investigate the inhibition of toll-like receptor 4 (TLR4) on innate inflammatory responses. We first demonstrate a significant loss of graft function shortly after transplant through the assessment of miR-375 and miR-200c in plasma as biomarkers. Using in vitro models, we investigate how targeting TLR4 mitigates islet damage and immune cell activation during the peritransplant period. The results of this study support the application of TAK-242 as a therapeutic agent to reduce inflammatory and innate immune responses to islets immediately following transplantation into the hepatic portal vein. Therefore, TLR4 may serve as a target to improve islet transplant outcomes in the future.


Assuntos
Imunidade Inata , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , MicroRNAs , Sulfonamidas , Receptor 4 Toll-Like , Imunidade Inata/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas/métodos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Humanos
6.
Cell Stem Cell ; 31(3): 334-340.e5, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38335966

RESUMO

Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M-/-, CIITA-/-, CD47+), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Humanos , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Primatas , Diabetes Mellitus Tipo 1/terapia , Transplante Homólogo
7.
Adv Drug Deliv Rev ; 207: 115205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360355

RESUMO

Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing ß-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Animais , Suínos , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Insulina , Cadáver
8.
STAR Protoc ; 5(1): 102816, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180833

RESUMO

Although the male epididymal fat pad is an effective site for islet transplantation, females lack this tissue. Here, we present a protocol to assess the parametrial fat pad (PFP) adjacent to the uterine horn in females as an alternative site for islet transplantation. We describe steps for islet isolation from the pancreas, counting, transplantation into PFP, and monitoring for engraftment. Transplantation into PFP is minimally invasive, time efficient, and supports long-term engraftment of syngeneic islets and rejection of allogeneic islets. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplantes , Masculino , Camundongos , Feminino , Animais , Transplante das Ilhotas Pancreáticas/métodos , Tecido Adiposo
9.
Transplantation ; 108(5): 1115-1126, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38192025

RESUMO

BACKGROUND: The utilization of islet-like cells derived from pluripotent stem cells may resolve the scarcity of islet transplantation donors. The subcutaneous space is a promising transplantation site because of its capacity for graft observation and removal, thereby ensuring safety. To guarantee subcutaneous islet transplantation, physicians should ensure ample blood supply. Numerous methodologies, including prevascularization, have been investigated to augment blood flow, but the optimal approach remains undetermined. METHODS: From C57BL/6 mice, 500 syngeneic islets were transplanted into the prevascularized subcutaneous site of recipient mice by implanting agarose rods with basic fibroblast growth factor at 1 and 2 wk. Before transplantation, the blood glucose levels, cell infiltration, and cytokine levels at the transplant site were evaluated. Furthermore, we examined the impact of the extracellular matrix capsule on graft function and the inflammatory response. RESULTS: Compared with the 1-wk group, the 2-wk group exhibited improved glycemic control, indicating that longer prevascularization enhanced transplant success. Flow cytometry analysis detected immune cells, such as neutrophils and macrophages, in the extracellular matrix capsules, whereas cytometric bead array analysis indicated the release of inflammatory and proinflammatory cytokines. Treatment with antitumor necrosis factor and anti-interleukin-6R antibodies in the 1-wk group improved graft survival, similar to the 2-wk group. CONCLUSIONS: In early prevascularization before subcutaneous transplantation, neutrophil and macrophage accumulation prevented early engraftment owing to inflammatory cytokine production.


Assuntos
Glicemia , Citocinas , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/imunologia , Animais , Glicemia/metabolismo , Citocinas/metabolismo , Camundongos , Masculino , Fatores de Tempo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/cirurgia , Tela Subcutânea/irrigação sanguínea , Tela Subcutânea/imunologia , Matriz Extracelular/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/irrigação sanguínea , Neovascularização Fisiológica
10.
Nutr Clin Pract ; 39(1): 86-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213274

RESUMO

Total pancreatectomy with islet autotransplantation (TPIAT) is a surgical treatment option for patients with chronic pancreatitis who have not responded to other therapies. TP offers pain relief whereas IAT preserves beta cell mass to reduce endocrine insufficiency. During the surgical procedure, the entire pancreas is removed. Islet cells from the pancreas are then isolated, purified, and infused into the liver via the portal vein. Successful TPIAT relieves pain for a majority of patients but is not without obstacles, specifically gastrointestinal, exocrine, and endocrine challenges. The postoperative phase can be complicated by gastrointestinal symptoms causing patients to have difficulty regaining adequate oral intake. Enteral nutrition is frequently provided as a bridge to oral diet. Patients undergoing TPIAT must be monitored for macronutrient and micronutrient deficiencies following the procedure. Exocrine insufficiency must be treated lifelong with pancreatic enzyme replacement therapy. Endocrine function must be monitored and exogenous insulin provided in the postoperative phase; however, a majority of patients undergoing TPIAT require little or no long-term insulin. Although TPIAT can be a successful option for patients with chronic pancreatitis, nutrition-related concerns must be addressed for optimal recovery.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatite Crônica , Humanos , Pancreatectomia/efeitos adversos , Transplante Autólogo , Transplante das Ilhotas Pancreáticas/métodos , Pancreatite Crônica/cirurgia , Pancreatite Crônica/complicações , Insulina , Dor/complicações , Dor/cirurgia , Resultado do Tratamento
11.
Biomed Mater ; 19(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194706

RESUMO

Type 1 diabetes-mellitus (T1DM) is characterized by damage of beta cells in pancreatic islets. Cell-sheet engineering, one of the newest therapeutic approaches, has also been used to create functional islet systems by creating islet/beta cell-sheets and transferring these systems to areas that require minimally invasive intervention, such as extrahepatic areas. Since islets, beta cells, and pancreas transplants are allogeneic, immune problems such as tissue rejection occur after treatment, and patients become insulin dependent again. In this study, we aimed to design the most suitable cell-sheet treatment method and macrocapsule-device that could provide long-term normoglycemia in rats. Firstly, mesenchymal stem cells (MSCs) and beta cells were co-cultured in a temperature-responsive culture dish to obtain a cell-sheet and then the cell-sheets macroencapsulated using different concentrations of alginate. The mechanical properties and pore sizes of the macrocapsule-device were characterized. The viability and activity of cell-sheets in the macrocapsule were evaluatedin vitroandin vivo. Fasting blood glucose levels, body weight, and serum insulin & C-peptide levels were evaluated after transplantation in diabetic-rats. After the transplantation, the blood glucose level at 225 mg dl-1on the 10th day dropped to 168 mg dl-1on the 15th day, and remained at the normoglycemic level for 210 days. In this study, an alginate macrocapsule-device was successfully developed to protect cell-sheets from immune attacks after transplantation. The results of our study provide the basis for future animal and human studies in which this method can be used to provide long-term cellular therapy in T1DM patients.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Humanos , Animais , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Glicemia/metabolismo , Alginatos , Insulina/metabolismo
12.
ACS Appl Mater Interfaces ; 16(3): 3042-3055, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215348

RESUMO

Challenges remain to be solved for the clinical translation of ß-cell encapsulation technology in the treatment of type 1 diabetes (T1D). Successful delivery of ß cells urgently needs the development of an encapsulation device with a thin dimension and rapid mass transport that offers stable immune isolation and complete retrieval. In this study, we focus on a laminate in which an islet-embedding alginate hydrogel layer (Alg) is sandwiched between two polymer layers (polyether sulfone, PES). Mechanical support by the PES layer protects the alginate from disintegrating after implantation and allows complete retrieval. The multilayered device has a thin membrane configuration (∼1 mm), and the edge of the laminate and the gaps between Alg and PES offer a semiopen structure that could be more permeable to molecules compared with the closed pocket of conventional macroencapsulation. Islets are suspended in the alginate solution and then encapsulated in the hydrogel layer in the middle of the laminate after gelation. Encapsulating syngeneic or xenogeneic islets in the laminate device corrected chemically induced T1D in mice for over 90 days in both the intraperitoneal space and the epididymal fat pad. The multilayered membrane system may therefore provide a translatable solution in ß cell-transplantation therapy in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Hidrogéis , Alginatos
13.
Xenotransplantation ; 31(1): e12831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37846880

RESUMO

BACKGROUND: Porcine tissues display a great potential as donor tissues in xenotransplantation, including cell therapy. Cryopreserving clinical grade porcine tissue and using it as a source for establishing therapeutic cells should be advantageous for transportation and scheduled manufacturing of MSCs. Of note, we previously performed encapsulated porcine islet transplantation for the treatment of unstable type 1 diabetes mellitus in the clinical setting. It has been reported that co-transplantation of islets and Mesenchymal stem cells (MSCs) enhanced efficacy. We assume that co-transplantation of porcine islets and porcine islet-derived MSCs could improve the efficacy of clinical islet xenotransplantation. METHODS: MSCs were established from fresh and cryopreserved non-clinical grade neonatal porcine islets and bone marrow (termed non-clinical grade npISLET-MSCs and npBM-MSCs, respectively), as well as from cryopreserved clinical grade neonatal porcine islets (termed clinical grade npISLET-MSCs). Subsequently, the cell proliferation rate and diameter, surface marker expression, adipogenesis, osteogenesis, and colony-forming efficiency of the MSCs were assessed. RESULTS: Cell proliferation rate and diameter did not differ between clinical grade and non-clinical grade npISLET-MSCs. However, non-clinical grade npBM-MSCs were significantly shorter and smaller than both npISLET-MSCs (p < 0.05). MSC markers (CD29, CD44, and CD90) were strongly expressed in clinical grade npISLET-MSCs and non-clinical grade npISLET-MSCs and npBM-MSCs. The expression of MSC-negative markers CD31, CD34, and SLA-DR was low in all MSCs. Clinical grade npISLET-MSCs derived from adipose and osteoid tissues were positive for Oil Red and alkaline phosphatase staining. The results of colony-forming assay were not significantly different between clinical grade npISLET-MSCs and non-clinical grade npBM-MSCs. CONCLUSION: The method described herein was successful in of developing clinical grade npISLET-MSCs from cryopreserved islets. Cryopreserved clinical grade porcine islets could be an excellent stable source of MSCs for cell therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Suínos , Animais , Transplante Heterólogo/métodos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
14.
Stem Cell Rev Rep ; 20(3): 839-844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153636

RESUMO

BACKGROUND: Insular allograft for unstable type 1 diabetes and autograft in pancreatectomy patients are nowadays considered established procedures with precise indications and predictable outcomes. The clinical outcome of islet transplantation is similar to that of pancreas transplantation, avoiding the complications associated with organ transplantation. OBJECTIVE: We hypothesised that transplantation of islets of Langerhans within an endocrine organ could better promote their engraftment and function. This could help to resolve or ameliorate known pathological conditions such as unstable type 1 diabetes and complicated type 2 diabetes. RATIONALE: Pancreatic islet transplantation is currently performed almost exclusively in the liver. The liver provides a sufficiently favourable environment, although not entirely. The hepatic parenchyma has a lower oxygen tension than the pancreatic parenchyma and the vascular structure of the liver is not typical of an exclusively endocrine organ. Moreover, islet transplantation into the liver is not without complications, including hematoma or portal vein thrombosis. PROPOSED PROJECT: The thyroid gland is the endocrine gland proposed as a 'container'. In fact, it has all the characteristics of 'physio-compatibility' which can address the objectives assumed. It is indeed an ideal site because it is an easily accessible anatomical site that allows islets to be implanted using ultrasound-guided transcutaneous inoculation technique. Moreover, it has physiological and anatomical endocrine affinities with pancreatic islets and, if necessary, it can be removed, using hormone supplementation or replacement therapy. CONCLUSIONS: The thyroid gland may be proposed as an ideal site for islet implantation due to its anatomical and physiocompatibility characteristics.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Pâncreas , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/cirurgia , Glândula Tireoide , Pancreatectomia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/cirurgia , Ilhotas Pancreáticas/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/fisiologia
15.
Tech Vasc Interv Radiol ; 26(4): 100927, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38123289

RESUMO

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-secreting beta cells in the pancreas, resulting in metabolic disturbances and long-term complications. While subcutaneous insulin remains the primary approach for achieving normoglycemia, pancreatic transplantation has emerged as an effective intervention for long-standing T1DM, providing insulin independence and normalized glycosylated hemoglobin levels. However, complications associated with pancreatic transplantation are frequent, necessitating thorough evaluation using diverse imaging modalities. This manuscript presents an overview of complications encountered with pancreatic transplantation, including vascular complications such as arterial and venous graft thrombosis, vessel stenosis, pseudoaneurysm, arterio-enteric fistula, and arteriovenous malformations. Additionally, the manuscript discusses other associated complications such as pancreatitis, pseudocyst formation, fistulas, pseudo-thrombosis of the iliac vein, post-transplantation lymphoproliferative disorder, and fluid collections. The integration of various imaging modalities plays a crucial role in diagnosing and managing these complications, with interventional radiologists assuming a vital role in employing image-guided procedures. Moreover, the manuscript explores pancreatic islet cell transplantation as a promising cellular-based therapy for T1DM, offering stable long-term glycemic control and decreased reliance on exogenous insulin in a significant proportion of recipients. This minimally invasive procedure involves the image-guided transcatheter infusion of islet cells obtained from deceased donors into the recipient's liver. The importance of interventional radiologists in managing complications related to pancreatic transplantation is underscored, with endovascular or image-guided approaches being utilized to address the diverse spectrum of encountered complications. Furthermore, the potential of islet cell transplantation as a minimally invasive alternative to traditional pancreatic transplantation is emphasized, as it offers the prospect of preventing many associated complications.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Transplante das Ilhotas Pancreáticas , Trombose , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/terapia , Radiologia Intervencionista , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/métodos
16.
Transpl Int ; 36: 11077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908676

RESUMO

Islet delivery devices (IDDs) offer potential benefits for islet transplantation and stem cell-based replacement in type 1 diabetes. Little is known about patient preferences regarding islet delivery device characteristics and implantation strategies. Patient preferences for IDDs and implantation strategies remain understudied. We invited patients, parents and caregivers to fill in an online questionnaire regarding IDDs. An online survey gathered responses from 809 type 1 diabetes patients and 47 caregivers. We also assessed diabetes distress in a subgroup of 412 patients. A significant majority (97%) expressed willingness to receive an IDD. Preferred IDD attributes included a 3.5 cm diameter for 37.7% of respondents, while when provided with all options, 30.4% found dimensions unimportant. Respondents were open to approximately 4 implants, each with a 5 cm incision. Many favored a device functioning for 12 months (33.4%) or 24 months (24.8%). Younger participants (16-30) were more inclined to accept a 6 months functional duration (p < 0.001). Functional duration outweighed implant quantity and size (p < 0.001) in device importance. This emphasizes patients' willingness to accommodate burdens related to IDD features and implantation methods, crucial for designing future beta cell replacement strategies.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Preferência do Paciente
17.
Front Immunol ; 14: 1287182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965322

RESUMO

Diabetes mellitus is a chronic metabolic disease, characterized by high blood sugar levels; it affects more than 500 million individuals worldwide. Type 1 diabetes mellitus (T1DM) is results from insufficient insulin secretion by islets; its treatment requires lifelong use of insulin injections, which leads to a large economic burden on patients. Islet transplantation may be a promising effective treatment for T1DM. Clinically, this process currently involves directly infusing islet cells into the hepatic portal vein; however, transplantation at this site often elicits immediate blood-mediated inflammatory and acute immune responses. Subcutaneous islet transplantation is an attractive alternative to islet transplantation because it is simpler, demonstrates lower surgical complication risks, and enables graft monitoring and removal. In this article, we review the current methods of subcutaneous device-free islet transplantation. Recent subcutaneous islet transplantation techniques with high success rate have involved the use of bioengineering technology and biomaterial cotransplantation-including cell and cell growth factor co-transplantation and hydrogel- or simulated extracellular matrix-wrapped subcutaneous co-transplantation. In general, current subcutaneous device-free islet transplantation modalities can simplify the surgical process and improve the posttransplantation graft survival rate, thus aiding effective T1DM management.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/cirurgia , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Tela Subcutânea/metabolismo
18.
Am Surg ; 89(11): 4241-4245, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840289

RESUMO

Total pancreatectomy with islet autotransplantation is a therapeutic option to effectively achieve pain relief and improvements in quality of life for selected patients with debilitating pain from chronic pancreatitis. The understanding of the best application and clinical execution of this procedure is in evolution, with outcomes studies and clinical trials in progress.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatite Crônica , Humanos , Pancreatectomia/métodos , Transplante Autólogo , Qualidade de Vida , Transplante das Ilhotas Pancreáticas/métodos , Pancreatite Crônica/cirurgia , Dor/cirurgia , Resultado do Tratamento
19.
Transpl Int ; 36: 11512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885808

RESUMO

Islet transplantation improves metabolic control in patients with unstable type 1 diabetes. Clinical outcomes have been improving over the last decade, and the widely used beta-score allows the evaluation of transplantation results. However, predictive pre-transplantation criteria of islet quality for clinical outcomes are lacking. In this proof-of-concept study, we examined whether characterization of the electrical activity of donor islets could provide a criterion. Aliquots of 8 human donor islets from the STABILOT study, sampled from islet preparations before transplantation, were characterized for purity and split for glucose-induced insulin secretion and electrical activity using multi-electrode-arrays. The latter tests glucose concentration dependencies, biphasic activity, hormones, and drug effects (adrenalin, GLP-1, glibenclamide) and provides a ranking of CHIP-scores from 1 to 6 (best) based on electrical islet activity. The analysis was performed online in real time using a dedicated board or offline. Grouping of beta-scores and CHIP-scores with high, intermediate, and low values was observed. Further analysis indicated correlation between CHIP-score and beta-score, although significance was not attained (R = 0.51, p = 0.1). This novel approach is easily implantable in islet isolation units and might provide means for the prediction of clinical outcomes. We acknowledge the small cohort size as the limitation of this pilot study.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Glicemia/análise , Projetos Piloto , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/cirurgia , Glucose/metabolismo , Glucose/farmacologia
20.
Cells ; 12(20)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37887267

RESUMO

Type 1 Diabetes (T1D) is an autoimmune destruction of pancreatic beta cells. The development of the Edmonton Protocol for islet transplantation in 2000 revolutionized T1D treatment and offered a glimpse at a cure for the disease. In 2022, the 20-year follow-up findings of islet cell transplantation demonstrated the long-term safety of islet cell transplantation despite chronic immunosuppression. The Edmonton Protocol, however, remains limited by two obstacles: scarce organ donor availability and risks associated with chronic immunosuppression. To overcome these challenges, the search has begun for an alternative cell source. In 2006, pluripotency genomic factors, coined "Yamanaka Factors," were discovered, which reprogram mature somatic cells back to their embryonic, pluripotent form (iPSC). iPSCs can then be differentiated into specialized cell types, including islet cells. This discovery has opened a gateway to a personalized medicine approach to treating diabetes, circumventing the issues of donor supply and immunosuppression. In this review, we present a brief history of allogenic islet cell transplantation from the early days of pancreatic remnant transplantation to present work on encapsulating stem cell-derived cells. We review data on long-term outcomes and the ongoing challenges of allogenic islet cell and stem cell-derived islet cell transplant.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/terapia , Terapia de Imunossupressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...